

Do we need to manage unmanaged forests?

Jacob Heilmann-Clausen

Setting goals for dynamic nature: paradox or solution?

Center for Macroecology, Evolution and Climate

Globe institute

University of Copenhagen

Conservation of forest biodiversity

Long history of forest loss Very little primary forest remaining

^a ARVE Group, Environmental Engineering Institute, Ecole Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland ^b Land Use Dynamics Unit, Swiss Federal Institute WSL, Zürcherstrasse 111, 9031 Birmensdorf, Switzerland

BIODIVERSITY REVIEW

AD 1850

100

WILEY Diversity and Distributio

Where are Europe's last primary forests?

Francesco Maria Sabatini¹ | Sabina Burrascano² | William S. Keeton³ | Christian Levers¹ | Marcus Lindner⁴ | Florian Pötzschner¹ | Pieter Johannes Verkerk⁵ | Jürgen Bauhus⁶ | Erik Buchwald⁷ | Oleh Chaskovsky⁸ | Nicolas Debaive⁹ | Ferenc Horváth¹⁰ | Matteo Garbarino¹¹ | Nikolaos Grigoriadis¹² | Fabio Lombardi¹³ | Inês Marques Duarte¹⁴ | Peter Meyer¹⁵ | Rein Midteng¹⁶ | Stjepan Mikac¹⁷ | Martin Mikoláš¹⁸ | Renzo Motta¹¹ | Gintautas Mozgeris¹⁹ | Leónia Nunes^{14,20} | Momchil Panayotov²¹ | Peter Ódor¹⁰ | Alejandro Ruete²² | Bojan Simovski²³ | Jonas Stillhard²⁴ | Miroslav Svoboda¹⁸ | Jerzy Szwagrzyk²⁵ | Olli-Pekka Tikkanen²⁶ | Roman Volosyanchuk²⁷ | Tomas Vrska²⁸ | Tzvetan Zlatanov²⁹ | Tobias Kuemmerle¹

Sabatini et al, 2018

Vegetation densification

Revised: 27 August 2018 Accepted: 28 August 2018

throughout European semi-natural vegetation

Received: 22 May 2018

DOI: 10.1111/gcb.14451

PRIMARY RESEARCH ARTICLE

CENTER FOR MACROECOLOGY, EVOLUTION AND CLIMATE UNIVERSITY OF COPENHAGEN SUM N Trend 2000-2015 65°N-WILEY Global Change Biology Land surface greening suggests vigorous woody regrowth 60°N-Robert Buitenwerf^{1,2} [] Brody Sandel^{1,3} | Signe Normand^{1,2} | Anne Mimet^{1,4} Δ LAI year⁻¹ (SD) 55°N-....... • <-2 -1-0 • 0-1 • 1-2 (* * * * *) • >2 50°N-. (semi-)natural vegetation (%) • <10 • 10-40 45°N-• 40-70 • >70 40°N-....................... • • ė N2000

....

0°

.

20°E

Solution: new hands off forest reserves?

- Forests are slow long way to recovery
- Important natural processes have been lost
- And others have been reinforced

Multidiversity (a) (b) Таха Gamma ⁰D $R^2 = 0.177$ Bats UNM p = < 0.00197.5 Birds 86.2 95.0 Spiders 92.5 Harvestmen 90.0 87.5 Reetles Gamma -lymenopterans 80 70 Lacewings True buas Vascular plants 93.7 Bryophytes 100 Lichens 90 80 Deadwood fungi 97.5 70 Ectomycorrhizal fungi UE/ 60 Bacteria RNA 80 EA (%) FA UNM

EA: Even-aged managed UEA: Uneven-aged managed UNM: Unmanaged

Schall et al. 2020, Journal of Applied Ecology

- UNM: old coppice with standards, unmanaged 20-70 yrs, no restoration, tree age
- ~160 yrs, highest timber volume

- EA: All stages in rotation considered, highest amounts of dead wood, lowest timber volume

I.e. highest biodiversity when there is both dead wood and light!

Hilmers et al. 2018, Journal of Applied Ecology

Restoration of disturbance regimes

FORUM

Restoration project in Gribskov 2014

CENTER FOR MACROECOLOGY, EVOLUTION AND CLIMATE UNIVERSITY OF COPENHAGEN

Goals:

- More deadwood
- More tree microhabitats
- More varied stand structure

Interventions:

5 X

Response:

+ Epiphytic lichens & bryophytes - no response monitoring yet

Experimental stand	Control 1 managed	Control 2 unmanaged
Experimental stand	managed	unmanaged

Principal design

Species specific responses

- Columbo oenas:1 6 pairs
- *Dendrocopus major*: 6 12 pairs
- Ficedula hypoleuca: 0 3 pairs
- *Troglodytes troglodytes*: 9 15 pairs

• From zero to six breeding pairs of red-listed birds

Treatment scale response: vegetation

Gap creation enhances herb richness (92 % increase in Gap-DW)) But decreases bryophyte richness (24 % decrease in Gap-DW))

5

0

Man

Unm

Exp

Pre treatment (2014)

Post treatment (2018)

Bryophytes

Gap(+DW) Gap(-DW)

Only common species

Strong increase for several competiti species, e.g.

- Calamagrostis epigejos
- Pteridium aquilinum
- Rubus idaeus

Tree specific responses: beetles

All treatments effective in enhancing beetle richness

- 2017: 20 red-listed species recorded
- 2022: 26 red-listed species recorded

Melasis buprestoides (EN)

125 individuals (2017)

Treatment

Preliminary conclusions

It works...

Relevant and measurable goals?

- Amount of dead wood
- Number of habitat trees
- Forest structure
- Reponse in relevant organism groups

Easy and +/- well tested tools to enhance biodiversity in managed forests

Clear, but more complex restoration potential...

- Uncertain long-term effects (e.g. forest structure)
- Trade offs (future number of old trees)
- Processes (e.g. grazing to maintain glades)

Aknowledgements

Species experts, field assistants & students:

Irina Goldberg, Thomas Læssøe, Rasmus Riis Hansen, Martin Schier Christiansen, Örjan Fritz, Troels Eske Ortvad, Elsen Andaya Cantillo, Kasper Grønbech Andersen, Mikkel Friborg Mortensen, Maria Tolstrup Andersen, Signe Wozniak Kristensen

Project partners:

CMEC: Carsten Rahbek, Anders Højgård Petersen, Niels Strange KU: Hans Henrik Bruun, Niels Strange Danish nature agency: Jan Erik Løvgren, Jens Bjerregaard Christensen

