WHICH AREAS TO RESTORE? QUANTIFYING THE BIODIVERSITY POTENTIAL OF LOCAL RESTORATION EFFORTS

Prof. Signe Normand

Center for Sustainable Landscapes Under Global Change Center for Landscape Research in Sustainable Agricultural Futures Aarhus University, Denmark

WORK OF A TEAM! IN PROGRESS! **TOGETHER WE RETHINK LANDSCAPES FOR A SUSTAINABLE FUTURE**

Nicolaisen

Pedersen

Martínez

Ordonez

Rosenberg Natorp

WE KNOW WHY BIODIVERSITY DECLINES! HOW TO REVERT LOSS? GOALS!

- Lack of space
- Lack of quality
- Lack of time

• Protect, restore, establish

• Large, connected & complementary

• Quality = undisturbed ecological processes, functional networks, minimized pressure

Illustration: Michael Munk

WHERE MATTERS! WHERE TO PROTECT? RESTORE? ESTABLISH?

Areas with the highest realized biodiversity or biodiversity potential

Areas that contribute to create large, connected, complementary areas for biodiversity

Area size and ecological connectivity

Protect			
Restore			
Establish			

Illustration: Aleksandrina Leonidova Mitseva, modified from Biodiversitetsrådet (2024)

Which areas in Denmark? If the goal is 30%?

Within the 30 %

- ~2 % contributes to EU's 30 % goal
- ~9 % needs individual assessment & most likely improved restoration efforts
- ~19 % under production (forestry or agriculture); returned to nature through restoration

Exsisting protected areas contributing to the 30% goalAreas in need of individual assessment and restorationAreas under production

Illustration: Aleksandrina Leonidova Mitseva, modified from Biodiversitetsrådet (2024)

Which areas in Denmark? If the goal is 30%?

Within the 30 %

- ~2 % contributes to EU's 30 % goal
- ~9 % needs individual assessment & most likely improved restoration efforts
- ~19 % under production (forestry or agriculture); returned to nature through restoration

Today focus on restoration & establishment The 70 % beyond, is also important

Exsisting protected areas contributing to the 30% goalAreas in need of individual assessment and restorationAreas under production

Illustration: Aleksandrina Leonidova Mitseva, modified from Biodiversitetsrådet (2024)

WHICH AREAS? EFFORTS & OUTCOME - EXAMPLE

Within the 30 %

Potential biodiversity

Example where efforts related to restoring natural processes:

- Grazing
- Natural vegetation dynamics
- Hydrology

WHICH AREAS? EFFORTS & OUTCOME - EXAMPLES

Within the 30 %

Potential biodiversity

Example where efforts related to restoring natural processes:

- Grazing
- Natural vegetation dynamics
- Hydrology

WHICH AREAS? EFFORTS & OUTCOME - EXAMPLES

Within the 30 %

- Realized biodiversity
- Potential biodiversity

Example where efforts related to restoring natural processes:

- Grazing
- Natural vegetation dynamics
- Hydrology

The 70 % beyond

WHICH AREAS? EFFORTS & OUTCOME — APPROACH!

Within the 30 %

Pressure

- Realized biodiversity Potential biodiversity
- **Dynamic & scalable**
- What before? What after? Which species?
- For multiple aspects of biodiversity
- Updatable w. project specific field data & constraints
- Can quantify the contribution of local projects to regional or national goals?

WHICH AREAS? EFFORTS & OUTCOME - APPROACH!

- Dynamic & scalable
- What before? What after? Which species?
- For multiple aspects of biodiversity
- Updatable w. project
 specific field data &
 constraints
- Can quantify the contribution of local projects to regional or national goals?

THE APPROACH INCLUDES TWO MAIN PARTS

Quantifying the biodiversity potential of different restoration efforts in local areas across Denmark (10x10 m or 200x200m)

Selecting area-based restoration efforts by optimizing biodiversity potential at project, landscape to national scale

THE APPROACH INCLUDES TWO MAIN PARTS

Quantifying the biodiversity potential of different restoration efforts in local areas across Denmark (10x10 m or 200x200m)

Selecting area-based restoration efforts by optimizing biodiversity potential at project, landscape to national scale

THE APPROACH INCLUDES TWO MAIN PARTS

Quantifying the biodiversity potential of different restoration efforts in local areas across Denmark (10x10 m or 200x200m)

Selecting area-based restoration efforts by optimizing biodiversity potential at project, landscape to national scale

Optimal restoration effort pr area = Biodiversity + Connected/Heterogeneity

... e.g. plus local considerations
+ Legal restrictions
+ Human dimension
+ Future climate change

A LOCAL CASE STUDY — VILHELMSBORG, AARHUS MUNICIPALITY

From fields to nature (300 ha)

 National plant diversity data plus local targeted field survey (e.g., biotopes)

Main restoration efforts

- Rewetting
- Forest (active)
- Grazing

Local constraints considered

- Landscape protection (old Manor)
- Future precipitation, flash flood (85 mm)
- Municipality plan for climate mitigation
- Plan after local stakeholder involvement

Current => future wet areas

Plan after stakeholders

- 75% open,
 25% forest
- Forest on 50% of the southern part

QUICK LOOK IN THE MACHINE — POTENTIAL ENVIRONMENTS X EFFORTS

OpenDryPoor

OpenWetPoor

574000

572000

OpenWetRich

QUICK LOOK IN THE MACHINE - RARITY

QUICK LOOK IN THE MACHINE - PHYLOGENETIC DIVERSITY

PD_ForestWetPoor

574000

572000

QUICK LOOK IN THE MACHINE - RICHNESS

Richness_ForestWetRich

Richness_OpenDryPoor

Richness_OpenWetRich

Richness_ForestWetPoor

572000 574000

Richness_OpenDryRich

QUICK LOOK IN THE MACHINE — OPTIMIZED SOLUTIONS

Maximized for biodiversity

Congruence across solutions

IN SUMMARY — DYNAMIC APPROACH

We can quantify biodiversity potential ... dynamically & scalable ... response to different restoration efforts ... from local projects to larger scales ... optimized relative to local constraints

IN SUMMARY — DYNAMIC APPROACH

We can quantify biodiversity potential ... dynamically & scalable ... response to different restoration efforts ... from local projects to larger scales ... optimized relative to local constraints We are working on including: ... trophic cascading effect ... species specific dispersal ... time until realizing the potential of restoration ... effects on ecosystem functioning ... Improve species environmental affinity ... potential for degraded nature ... effects of converted agricultural practices in 70 %

IN SUMMARY — DYNAMIC APPROACH — FOR SETTING GOALS?

We can quantify biodiversity potential ... dynamically & scalable ... response to different restoration efforts ... from local projects to larger scales ... optimized relative to local constraints We are working on including: ... trophic cascading effect ... species specific dispersal ... time until realizing the potential of restoration ... effects on ecosystem functioning ... Improve species environmental affinity ... potential for degraded nature ... effects of converted agricultural practices in 70 % As decision support for setting local goals

Continent scale

THANK YOU TO ALL IN SUSTAINSCAPES **TOGETHER WE RETHINK LANDSCAPES FOR A SUSTAINABLE FUTURE**

APPROACH: QUANTIFYING BIODIVERSITY POTENTIAL

<u>Plant</u> species occurrences & habitat affinities

- Wet-dry
- Poor-rich
- Open-closed

Modelled potential environmental dimensions

DryRich WetPoor WetRich Possible restoration efforts depending on environment

Local species pool for each restoration effort (e.g., lowland peat soil)

- Grazing (open)
- Passive/active establishment of forest
- Rewetting

Passive/active establishment of forest

Illustration: Derek Corcoran, Aleksandrina Leonidova Mitseva

Example results

<u> RPubs - SystematicLandscape</u>

QUICK LOOK IN THE MACHINE — OPTIMIZED SOLUTIONS

Maximized for biodiversity

Solution current wetness Solution future wetness

